
www.manaraa.com

Software Caching and Computation Migration in Olden

Martin C. Carlisle� and Anne Rogers
Department of Computer Science

Princeton University
fmcc,amrg@cs.princeton.edu

TR-483-95

Abstract

The goal of the Olden project is to build a system that provides parallelism for general pur-
pose C programs with minimal programmer annotations. We focus on programs using dynamic
structures such as trees, lists, and DAGs. We demonstrate that providing both software caching
and computation migration can improve the performance of these programs, and provide a
compile-time heuristic that selects between them for each pointer dereference. We have imple-
mented a prototype system on the Thinking Machines CM-5. We describe our implementation
and report on experiments with ten benchmarks.

1 Introduction

Olden is a continuing project whose goals are to build a compiler and runtime system for C programs
on distributed-memory SPMD machines, automatically detecting parallelism, and inserting commu-
nication as much as possible. We speci�cally focus on programs using recursive data structures. To
date, little work has been done to address the problem of supporting these programs. Although
work has been done on supporting SPMD execution of array-based programs, these techniques do
not extend to programs using recursive structures, because they rely on the fact that arrays are
statically de�ned and directly addressable. Recursive data structures, however, are dynamically
de�ned and must be recursively traversed to be addressable.

In prior work [35], we described a new execution model for supporting programs that use pointer-
based dynamic structures and described results on a preliminary implementation. That model used
a simple mechanism for migrating the thread of control based on the layout of heap-allocated data
and introduced parallelism using a technique based on futures and lazy task creation. Although we
observed good performance on several benchmarks, we noticed that the model performed poorly in
situations where the results of subcomputations on di�erent processors were being merged. In these
situations, the thread of computation tended to \ping-pong" between the two processors, and the
resultant communication cost outweighed the available parallelism.

We, as have other researchers [21, 32], determined that both computation migration and caching
need to be supported to provide good performance. Computation migration takes advantage of the
locality of nearby objects in the data structure; while caching allows multiple objects on di�erent
processors to be accessed more e�ciently. Unlike these other projects, where the selection between
mechanisms must be made by the programmer, Olden provides a compile-time heuristic that for
each pointer dereference selects the appropriate mechanism to be used. To assist the compiler in
making this choice, we provide an extension to the language, path-a�nities, that gives information
about the expected layout of the data.

�Supported, in part, by a National Science Foundation Graduate Fellowship, the Fannie and John Hertz Foundation,
and NSF FAW award MIP-9023542.

1

www.manaraa.com

Since distributed-memory machines do not support caching directly, we implemented a software
caching scheme. Providing a cache requires a mechanism for maintaining coherence. We use a
local invalidation scheme where the cache is cleared at certain synchronization points. Our caching
method relies on the insertion of pointer test code by the compiler and uses active messages [38] for
communication between processors.

In Section 2, we give a brief overview of the Olden programming model, and in Section 3, describe
Olden's computation migration and software caching mechanisms. Then, in Section 4, we present
path-a�nities and the heuristic used by the compiler to choose between computation migration and
software caching. In Section 5, we report results for ten benchmarks using our implementation on
the Thinking Machines CM-5 and then in Section 6, contrast Olden with related work. Finally, we
give conclusions and suggestions for future work in Section 7.

2 Programming Model

The Olden model and its computation migration mechanism are described in detail in a prior pa-
per [35]. In this paper, we will provide only a brief overview of the context of our work.

Olden uses an SPMD programming model. Each processor has an identical copy of the program,
as well as a local stack that is used to store procedure arguments, local variables and return addresses.
Additionally, there is a distributed heap where each processor owns one section. We view heap
addresses as consisting of a pair of a processor name and a local address hp; li. This information is
encoded in a single 32-bit word.

Olden takes as input a program written in a restricted subset of C, with some additional Olden-
speci�c annotations. We require that programs do not take the address of stack-allocated objects,
which ensures that all pointers point into the heap.1 The major di�erences between our programming
model and the standard sequential model are that the programmer explicitly chooses a particular
strategy to map the dynamic data structures over the distributed heap, and annotates work that
can be done in parallel using futures [20].

In general, the computation will tend to follow the data, so to get good performance, the pro-
grammer must place related pieces of data on the same processor explicitly. Mapping the data to the
processors is achieved by including a processor number in each allocation request. Olden provides
a library routine, ALLOC, that allocates memory on a speci�ed processor, and returns a pointer that
encodes both the processor name and the local address of the allocated memory.

Additionally, Olden uses futures to indicate opportunities for parallelism. The programmer
may mark a procedure call as a futurecall, if it may be evaluated safely in parallel with its parent
context. A touch must also be inserted by the programmer before the return value is used. Olden's
implementation of futures is to save the futurecall's context (return continuation) on a work list,
and evaluate the body directly. New threads are generated only if a migration occurs during the
execution of the body of the future. In this case, the now idle processor will grab a continuation
from the work list and start executing it; this is called future stealing. If no migration occurs, then
the function will complete and we will avoid paying the overhead of creating a new thread.

The programmer-speci�ed data layout heavily a�ects the performance of the futures. If large
groups of related data are placed together, Olden will generate a small number of large granularity
tasks, and thus be more e�cient. A simple example of such a data layout for a balanced tree is to
distribute sub-trees at some �xed depth equally among the processors. In this case, one thread will
be generated for each subtree at that depth. These threads should have large granularity, and good
load balancing.

Given a suitably restricted C program using ALLOC and futures as speci�ed, the Olden compiler
will generate an SPMD program that correctly handles references to global heap pointers and calls
the Olden library routines as needed. These routines manage the threads, and perform the requisite
communication between the processors.

1We do provide structure return values, which can be used to handle many of the cases where & is needed.

2

www.manaraa.com

tag
valid bits

 2K

. . .1024 hash buckets

 page

(32 lines)

Figure 1: Olden's software cache

3 Remote Data Access

As previously mentioned, Olden provides two mechanisms for accessing data on a remote processor:
computation migration and software caching.

3.1 Computation migration

The basic idea of computation migration is that when a thread executing on Processor P attempts
to access a location residing on Processor Q, the thread is migrated from P to Q. To make this
a�ordable, we send only the portion of the thread's state that is necessary for the current procedure
to complete execution: the registers, program counter, and current stack frame. When it is time
to return from the procedure, control is returned to Processor P. To accomplish this, Q sets up a
special return stub to be used in place of the return to the caller. The stub migrates the thread back
to P by sending a message containing the return address, return frame pointer, and the registers.
Note that the stack frame is not returned, as it is no longer needed. Processor P can then complete
the procedure return by restarting the thread at the return address.

Before each heap reference that uses computation migration, the Olden compiler inserts an
explicit check to distinguish if it is local or remote and translate the address. The local versus
remote check extracts the processor name from the heap address and checks it against the local
processor's name. A remote reference is handled by a call to the migration routine from the Olden
library.

3.2 Software Caching

The software caching mechanism is very similar to the caching scheme in Blizzard-S [37]. Each
processor uses its local memory as a large, fully-associative, write-through cache. As in Blizzard-S,
we perform allocation on the page level, and perform transfers at the line level.2 The main di�erence
between Olden's cache and that in Blizzard-S is that we cannot rely on virtual memory support.
Consequently, rather than using a very large virtual table to translate addresses (pages of this table
are allocated on demand by trapping page faults), we instead use a 1K hash table with a list of pages
kept in each bucket. Figure 1 shows the translation table. Since entries are kept on a per-page basis,
the chains in each bucket will tend to be quite short (in our experience, the average chain length is
approximately one.)

The Olden compiler directly inserts software checks before each heap reference that uses software
caching. The table lookup is very similar to that of Blizzard-S, with the addition of searching the
lists stored in the hash table. In addition to checking the state bit for the line, as done in Blizzard-S,
our lookup also returns a tag used to translate the address from a global to a local pointer (in
Blizzard-S this translation is performed automatically by the virtual memory hardware). For both
systems, in the event that the page is not allocated or the line is not valid, the appropriate allocation
or transfer is performed by a library routine.

2In Olden, a page is 2K bytes, and a line 64 bytes.

3

www.manaraa.com

0 1 2 3 0

10 1 100 nextnext

Cyclic distribution

next next next next

next

Blocked distribution

Figure 2: Two di�erent list distributions. The numbers in the boxes are processor numbers. Dotted
arrows represent a sequence of list items.

Once we introduce a local cache at each processor, we must provide a means to ensure that
no processor sees stale data. The most intuitive coherence model is sequential consistency [27]. It
may be summarized by stating that each processor performing a read on a location sees the most
recently completed write to that location. Sequential consistency may be provided by the underlying
system, or guaranteed by having invalidations in the code. A coherence mechanism that requires no
communication is called a local knowledge scheme. Prior local knowledge schemes (e.g., [12, 15, 31])
have relied on the compiler speci�cally inserting code to invalidate the local cache. We implement
a local knowledge scheme in Olden using the runtime system, by having each processor invalidate
its entire cache upon receiving a migration. Since Olden's synchronization mechanisms require that
concurrent threads do not interfere, a program running under this scheme provably will have the same
semantics as the same program running on a sequentially consistent system (we sketch this proof in
Appendix A). We have made a slight improvement to this scheme, by noticing that on returns we
need only invalidate cached copies of lines from processors whose memories have been written by
the returning thread. (Since the thread cannot read data written by other concurrently executing
threads, it need only invalidate cache lines that it might have updated while on a remote processor.)
This scheme will perform well when most shared data is written between migrations. Appendix A
describes two other coherence mechanisms that we explored and compares their performance to our
local knowledge scheme.

4 Selecting a Mechanism

Given these two mechanisms, the compiler must decide, for each pointer dereference, which it will
choose for accessing remote data. Our goal is to minimize the total communication cost over the
entire program. Consequently, although an individual thread migration is substantially more expen-
sive than performing a single remote fetch (by a factor of about seven on the CM-5), it may still
be desirable to pay the cost of the migration, if moving the thread will convert many subsequent
references into local references. Consider a list of N elements, evenly divided among P processors
(two possible con�gurations are given in Figure 2). First suppose the list items are distributed in a

block fashion. A traversal of this list will require N (P�1)
P remote accesses if software caching is used,

but only P � 1 migrations if the computation is allowed to follow the data. Hence it is better to
use computation migration for such a data layout. Caching, however, performs better when the list
items are distributed using a cyclic layout. In this case, using computation migration will require

N � 1 migrations, whereas caching requires N (P�1)
P

remote accesses.
Olden uses a three-step process to select a mechanism for each program point. First, the pro-

grammer speci�es path-a�nities, which give hints to the compiler regarding the layout of the data.
Second, a data ow analysis is used to �nd pointers that are traversing the data structure in a
regular manner. In each loop (either iterative or recursive), at most one such variable is selected for
computation migration. Finally, interactions between loops are considered, and additional variables
are marked for caching if it is determined that using computation migration for them may cause a
bottleneck.

4

www.manaraa.com

while (s) {

 t = t->right->left;

 u = s->right;

}

 and right is 70).

s t
 s = s->left;

uMatrix

t

u

s 90

63

70
(Assume path-affinity of left is 90

a

before

f
t
e
r

Update

Figure 3: A simple loop with induction variables

4.1 Path-a�nity hints

Since the communication cost of a particular mechanism for a particular program fragment is highly
dependent on the layout of the data, we allow the programmer to provide a quanti�ed hint to the
compiler regarding the layout of a recursive data structure. Each pointer �eld of a structure may be
marked with a path-a�nity that represents the probability that a path (i.e., a traversable sequence
of pointers in the data structure) along that �eld will be local. For example, if a �eld, F, has a
path-a�nity of 70%, that would indicate that a path along �eld F in the data structure would be
expected to cross a processor boundary 30% of the time. Consider again the examples given in
Figure 2. In the blocked case, the path-a�nity of the next �eld is 1 � P�1

N�1 (of the N � 1 next

pointers, P �1 of them point to an object on a di�erent processor). In the cyclic case, the next �eld
has a path-a�nity of zero (each next pointer is to an object on a di�erent processor). This example
also illustrates the intuition behind our heuristic's use of path-a�nities. In general, computation
migration is preferable for high a�nity paths, and software caching for low a�nity paths.

Note that the path-a�nities supplied by the programmer are merely hints, and may be omitted
(in which case a default value is used), approximated, or even wrong without a�ecting program
correctness.

4.2 Update matrices

We want to be able to estimate how the program will, in general, traverse its recursively-de�ned
structures. To accomplish this, we examine the loops and recursive calls (hereafter referred to as
control loops) checking how pointers are updated in each iteration. We say that s is updated by t

along �eld F in a given loop, if the value of s at the end of an iteration is the value of t from the
beginning of the iteration dereferenced through �eld F (i.e., s0=t->F). This notion extends directly
to paths of �elds. Intuitively, variables that are updated by themselves in a control loop will traverse
the data structure in a regular fashion. We call such variables induction variables. In Figure 3, s
and t are induction variables (since s0=s->left and t0=t->right->left), whereas u is not (since
its value cannot be written as a path from its value in the previous iteration).

We summarize information on possible induction variables in an update matrix. The entry at
location (s,t) of the matrix is the path-a�nity of the update, if s is updated by t, and is blank
otherwise. In Figure 3, since s is updated by itself along the �eld left, the entry (s,s) in the
update matrix is 90 (the a�nity of the left �eld). Induction variables are then simply those pointers
with entries along the diagonal (i.e., they have been updated by themselves). In our example, the
induction variables s and t have entries on the diagonal. We will consider only these for possible
computation migration, as they traverse the structure in a regular manner.

The update matrices may be computed using standard data-owmethods. (Note again that exact
or conservative information is not needed, as errors in the update matrices will not a�ect program
correctness.) The only complications are that variables may have multiple updates or update paths
of length greater than one. There are three cases. The �rst is a join point in the ow graph (e.g.,
at the end of an if-then statement). Here we simply merge the two updates from each branch by
taking the average of their a�nities. This corresponds to assuming each branch is taken about half
of the time, and could be improved with better branch prediction information. If the update does
not appear in both branches, then rather than averaging the update, we omit it. We do this because
we wish to consider only those updates that occur in every iteration of the loop, thus guaranteeing

5

www.manaraa.com

 else

 return TreeAdd(t->left)+

 TreeAdd(t->right)+

 t->val;

}

int TreeAdd (tree *t) {
 and right is 70).
(Assume path-affinity of left is 90

 if (t == NULL) return 0;

97

Update

Matrix t
before

tafter

Figure 4: TreeAdd

that the updated variable is actually traversing the structure.
Second, we must have a rule for multiple updates via recursion. Consider the simple recursive

program in Figure 4. Note that t has two updates, one corresponding to each recursive call. The
two recursive calls form a control loop. This control loop does not include the join at the end
of the if-then-else statement, as the recursive calls occur before the end of the else branch.
Therefore, the merging rule described above does not apply for the control loop, and the update
of t is not omitted. In this case, we de�ne the path-a�nity of the update as the probability that
either of the updates will be along a local path (since both are going to be executed). If we assume
the path-a�nity of left is 90% and right is 70%, then the probability that both are remote is 3%
(assuming independence). Consequently, the path-a�nity of the update of t because of the recursive
calls is 97% (the probability that at least one will be local). We will further motivate this choice in
Section 4.3.

The �nal possiblity is an update path of length greater than one (e.g., t=t->left->left). The
path-a�nity is then simply the product of the path-a�nities of each �eld along the path.

So far, we have only discussed computing update matrices intraprocedurally. A full interproce-
dural implementation would need to be able to compute paths generated by the return values of
functions, and handle control loops that span more than one procedure (e.g., a mutual recursion).
Our preliminary implementation performs only a limited amount of interprocedural analysis. In par-
ticular, we do not consider return values, or analyze loops that span multiple procedures. Although
this preliminary implementation is su�cient for all of our benchmarks, we plan to extend it to a full
interprocedural analysis using access path matrices [22].

4.3 The heuristic

Once the update matrices have been computed, the heuristic uses a two-pass process to select
between computation migration and software caching. First, each control loop is considered in
isolation. Then, in the second phase, we consider the interactions between nested control loops, and
possibly decide to do additional caching. In addition to having the update matrix for each control
loop, we also assume each control loop has a notation indicating if it is parallelizable. The Olden
compiler checks for the presence of futures to determine if a control loop may be parallelized.

In the �rst pass, for each control loop, we select the induction variable whose update has the
strongest path-a�nity. If a control loop has no induction variable, then it will select computation
migration for the same variable as its parent (the smallest control loop enclosing this one). If the
path-a�nity of the selected variable's update exceeds a certain threshhold, or the control loop is
parallelizable, then computation migration is chosen for this variable; otherwise, dereferences of this
variable are cached. Dereferences of all other pointer variables are cached. We select computation
migration for parallelizable loops with path-a�nities below the threshhold because this mechanism
allows us to generate new threads. (As described in Section 2, in Olden, new threads are only
generated following a migration).

The threshhold, and the default path-a�nity have been set to 90%3 and 70%, respectively.
These values were chosen so that, by default, list traversals will use caching, tree traversals will
use computation migration, and tree searches will use caching. The averaging method for recursive
calls was also designed to obtain this behavior. In our experience, these decisions provide the best

3Since the cost of a migration is about seven times that of a cache miss, the break-even path-a�nity is about 86%.

6

www.manaraa.com

 if (t==NULL) return;

 else {

 Traverse(t->left);

 Traverse(t->right);

 }

}

 for each body, b, in l do in parallel {

 Traverse(t);

 }

}

WalkAndTraverse(list *l, tree *t) {

Walk(list *l) {

 while (l) {

Traverse(tree *t) {

 visit(l);

}

 l=l->next;

}
}

}

 if (t==NULL) return;

 do in parallel {

 TraverseAndWalk(t->left);

TraverseAndWalk(tree *t) {

 else {

 TraverseAndWalk(t->right);

 Walk(t->list);

 }

Figure 5: Code examples with and without a bottleneck

performance most of the time. In those cases where the defaults are not appropriate, the programmer
can specify path-a�nity hints. (We do not allow the programmer to modify the threshhold, but the
same e�ect can be obtained by modifying the path-a�nities). We explicitly speci�ed path-a�nities
in only three of the ten benchmarks (TSP, Perimeter, and MST).

Considering control loops in isolation does not yield the best performance. Inside a parallel
loop, it is possible to generate a bottleneck by using computation migration. Consider the codes in
Figure 5. WalkAndTraverse is a procedure that for each list item traverses the tree. If computation
migration were chosen for the traversal of the tree, the parallel threads for each item in the list
would be forced to serialize on their accesses to the root of the tree, which becomes a bottleneck. In
TraverseAndWalk, for each node in the tree, we walk the list stored at that node. Since there is a
di�erent list at each node of the tree, the parallel threads at di�erent tree nodes are not be forced
to serialize, and there is no bottleneck. In general, a bottleneck occurs whenever the initial value of
the induction variable of the inner loop is the same over a large number of iterations of the outer
loop. Returning to the examples, in WalkAndTraverse, t has the same value for each iteration of
the parallel for loop, while in TraverseAndWalk, t->list has a di�erent value in each iteration, as
t->list has a di�erent value at each node in the tree. Athough in general this is a di�cult aliasing
problem, we do not need exact or conservative information. If incorrect information is used, the
program will run correctly, but possibly more slowly than if more precise information were available.
Our current approximation tests to see if the induction variable for the inner loop is updated in the
parent loop. If so, we assume no bottleneck will occur; otherwise, we use caching in the inner loop
to avoid the possibility of a bottleneck. Once the heuristic has analyzed the interactions between
loops, the selection process is complete.

5 Experimental Results

We have implemented Olden on a Thinking Machines CM-5. The input to Olden is a C program
annotated with futures, touches, calls to Olden's allocation routine, and data structure a�nity
information. Our system consists of a compiler for the annotated C code and a runtime system.
The compiler is an adaptation of lcc [17], an ANSI C compiler, that generates code for testing for
pointer locality and for handling futures and touches. It also includes our heuristic for choosing
between thread migration and software caching. The runtime system is written in a combination of
C and SPARC assembly code.

This section summarizes preliminary results from using Olden on a suite of ten benchmarks. Ta-
ble 1 briey describes each benchmark. Table 2 lists the running time of a sequential implementation
plus speed-up numbers for up to 32 processors for each benchmark. The numbers reported represent
averages over three runs done in dedicated mode using the local knowledge cache coherence scheme.
We report whole program times (W) for three benchmarks, Power,4 Barnes, and Health, to allow

4The speedups for Power exceed those reported in prior work [35] due to an improved implementation of migration.

7

www.manaraa.com

Table 1: Benchmark Descriptions

Benchmarks Description Problem Size

TreeAdd Adds the values in a tree 1024K nodes
Power Solves the Power System Optimization problem [30] 10,000 customers
TSP Computes an estimate of the best hamiltonian circuit 32K cities

for the Traveling-salesmen problem[24]
MST Computes the minimum spanning tree of a graph[6] 1K nodes
Bisort Sort by creating two disjoint bitonic sequences and 128K integers

then merging them[8]
Voronoi Computes the Voronoi Diagram of a set of points[19] 64K points
EM3D Simulates the propagation electro-magnetic waves 2K nodes

in a 3D object[14]
Barnes-Hut Solves the N-body problem using hierarchical methods [5] 8K bodies
Perimeter Computes the perimeter of a set of quad-tree encoded 4K x 4K image

raster images [36]
Health Simulates the Columbian health care system [29] 1365 villages

for comparison with published results. We report kernel times only for the rest to avoid having
their data structure building phases, which show excellent speed-up, skew the results. We use a
true sequential implementation compiled with our compiler for computing speedups. The speed-up
numbers for the one-processor version give a measure of Olden's overhead. These experiments were
performed using CM-5s at two National Supercomputing Centers: NCSA at the University of Illinois
and NPAC at Syracuse University.

The benchmarks fall into two categories: those that use only migration (M) and those that use
both migration and caching (M+C). TreeAdd, Power, TSP, and MST use tree-based algorithms that
have simple data access patterns. Consequently, the Olden compiler chooses to use migration alone to
satisfy remote references in these programs. TreeAdd and Power both have good performance.5 They
do not show perfect speedup, because of unavoidable overhead from testing pointers, handling futures
and touches, and managing the stack. Also, tree-based algorithms naturally show less parallelism
near the top of the tree. TSP performs well, but not quite as well as TreeAdd and Power. It uses
uses a divide-and-conquer algorithm as they do, but unlike them its merge phase is non-trivial. Each
merge is sequential and walks through the subtrees, which requires a migration for each participating
processor. Using software caching in place of migration would increase rather than decrease the cost
of communication for this application, because a large amount of data is accessed on each processor
during the subtree walk. The performance for MST is poor and degrades sharply as the number of
processors increases, because the number of migrations is O(NP). Caching would not reduce the
communication costs for this program, because these migrations serve mostly as a mechanism for
synchronization.

The remaining six benchmarks use a combination of migration and software caching. Bisort
performs two sorts, one forward and one backward, on a randomly generated set of integers. The
data is stored in a binary tree. The algorithm creates a bitonic sequence in each subtree and then
merges them to obtain the sorted result. The merge phase swaps subtrees to create two disjoint
bitonic sequences and then performs two recursive calls. Swapping the trees rather than pointers
to the trees is expensive, but helps maintain locality, which is crucial to the performance of the
second sort and subsequent uses of the data. A pair of pointers is used to search the subtrees during
the merge phase. The migration heuristic is designed to use software caching for tree searches,
so dereferences to these pointers use caching. The tree swaps, on the other hand, use migration,
because a large amount of data is touched on each processor between migrations.

Voronoi is a classic geometric divide-and-conquer algorithm. The points are stored in a binary
tree sorted by x-coordinate. The algorithm computes the Voronoi diagram of the two subtrees and
then merges them. The merge phase walks along the convex hull of the two sub-diagrams, and adds
edges to knit them together to form the Voronoi diagram for the whole set. Walking along the

5Our e�ciency on 64 processors is about 80%, compared to 75% by Lumetta et al. [30].

8

www.manaraa.com

Table 2: Results

Benchmarks Heuristic Sequential Speed-up by number of processors Migrate-only
choice time (sec.) 1 2 4 8 16 32 Speedup (32)

TreeAdd M 4.49 0.73 1.47 2.93 5.90 11.81 23.4
PowerW M 286.59 0.96 1.94 3.81 6.92 14.85 27.5
TSP M 43.35 0.95 1.92 3.70 6.70 10.08 15.8
MST M 9.81 0.96 1.36 2.20 3.43 4.56 5.14
Bisort M+C 31.41 0.73 1.35 2.29 3.52 4.92 6.33 6.13
Voronoi M+C 49.73 0.75 1.38 2.41 4.23 6.88 8.76 0.47
EM3D M+C 1.21 0.86 1.51 2.69 4.48 6.72 12.0 0.05
Barnes-HutW M+C 555.79 0.74 1.42 3.00 5.29 8.13 11.2 <0.01
Perimeter M+C 2.47 0.86 1.70 3.37 6.09 9.86 14.1 2.96
HealthW M+C 34.19 0.73 1.47 2.93 5.72 11.09 16.42 16.52
W { Whole program times

convex hull of a single subresult is best done with migration, but the merge phase walks along two
subresults, alternating between them in an irregular fashion. As a result, the heuristic chooses to
pin the computation on the processor that owns the root of one of the subresults and use software
caching to bring remote subresults to the computation. This version performs dramatically better
than an early version that used only migration [35]. The heuristic does not make the optimal choice
in this situation; it would be better to traverse one of the subresults while caching the other (such a
version has a speed-up of over 12 on 32 processors). We are exploring ways to improve the heuristic
to handle this case better.

EM3D models the propagation of electromagnetic waves in a 3D object, which is represented as
a bipartite graph containing E nodes and H nodes. At each time step, new values for the E nodes
are computed from a weighted sum of the neighboringH nodes, and then the same is done for the H
nodes. The main computation loop consists of walking down a list of nodes, reading the values from
the neighbors and using them to update the current node. The heuristic chooses to use migration
for the nodes, because they have high locality, and to use software caching for the edges, because
they have low locality. Our implementation performs comparably to the ghost node implementation
of Culler et al. [14], yet does not require substantial modi�cation to the sequential code.

Barnes-Hut simulates the evolution of bodies in a gravitational system. This computation is bro-
ken into three pieces: building the tree used to represent the particles, calculating new accelerations
for the particles by walking the tree, and then computing the new positions of the particles. In our
implementation, the tree building phase is sequential and starts to represent a substantial fraction
of the computation as the number of processors increases. Factoring out this cost, we achieve a
speed-up of over 19 on 32 processors. The migration heuristic chooses a combination of migration
and caching for the �rst two phases: migration to send computation to the processor that owns the
particle; caching to bring \distant" tree nodes to the computation as needed. Migration is chosen
for the particles, because they have high locality. Software caching is chosen for tree even though it
has high locality to avoid causing a bottleneck at its root. Migration alone su�ces for computing the
new positions of the particles, again because they have high locality. Falsa� et al. [16] give results for
six di�erent implementations of this benchmark; our results using their parameters (approximately
36 secs/iter) fall near the middle of their range (from 15 to 80 secs/iter).

Perimeter uses a quad-tree encoding of the raster image. The algorithm super�cially looks
similar to TreeAdd, but traverses the tree in a very di�erent way when computing the contribution
of neighboring quadrants. The heuristic chooses to use caching when determining the neighbors of
a quadrant, because they may be far away in the tree.

Health simulates the Columbian health care system [29] using a four-way tree. Each node of
the tree represents a hospital, and at each node there is a list of patients. At each timestep, the
tree is traversed, and patients, once assessed, are either treated or passed up the tree to the parent.
The heuristic, according to its design, chooses migration for the tree traversal, and caching to access
remote items in the lists. Although Health uses the same synchronization as MST, we obtain a

9

www.manaraa.com

better speedup as there is more work done in each iteration. Since the number of patients at each
node that arrive from a remote processor is small (less than two percent), the additional overhead
of maintaining the cache outweighs the bene�t of caching.

6 Related Work

Our work in Olden spans two di�erent areas of parallel computing: providing support for program-
ming and maintaining multiprocessor cache coherence. In this section we describe how our work
relates to that of other groups in each of these areas. Both are very active areas of research; out of
necessity we restrict our discussion to papers that seem most relevant.

6.1 Programming models

Linda [9] provides a tuple-space mechanism for distributed processors to work on a shared linked
structures. This model provides a global shared address space, but no control over the actual
assignment of data to processors.

Emerald [23] and Amber [11] are object-oriented languages that employ thread and object mi-
gration mechanisms to improve locality. These languages provide primitives for object location and
mobility, and constructs to allow the programmer to indicate whether the thread or the object(s)
should move to satisfy an invocation that references a remote object.

Prelude [21], is an explicitly parallel language that provides a computation model based on
threads and objects. Annotations are added to a Prelude program to specify which of several
mechanisms | remote procedure call, object migration, and computation migration | should be
used to implement an object or thread.

Orca[4] also provides an explicitly parallel programming model based on threads and objects.
Orca hides the distribution of the data from the programmer, but is designed to allow the compiler
and runtime system to implement shared objects e�ciently. The Orca compiler produces a summary
of how shared objects are accessed that is used by its runtime system to decide if a shared object
should be replicated, and if not, where it should be stored. Operations on replicated and local
objects are processed locally; operations on remote objects are handled using a remote procedure
call to the processor that owns the object.

Split-C [14] is a parallel extension of C that provides a global address space and maintains a
clear concept of locality by providing both local and global pointers. Split-C provides a variety of
primitives to manipulate global pointers e�ciently. In a related piece of work, Lumetta et al. [30]
describe a global object space abstraction that provides a way to decouple the description of an
algorithm from the description of an optimized layout of its data structures.

The Concert system [13] provides compiler and runtime support for e�cient execution of �ne-
grained concurrent object-oriented programs. Concert provides a globally shared object space, com-
mon programming idioms (such as RPC and tail forwarding), inheritance, and some concurrency
control. Objects are single threaded and communicate asynchronously through message passing
(invocations).

Cid [32], a recently proposed extension to C, supports a threads and locks model of parallelism.
Cid threads are lightweight and the thread creation mechanism allows the programmer to name a
speci�c processing element on which the thread should be run. Unlike Olden, Cid threads cannot
migrate once they have begun execution. This makes it awkward to take advantage of data locality
while traversing a structure iteratively. Cid also provides a global object mechanism that is based
on global pointers. The programmer explicitly requests access to a global object using one of several
sharing modes (for example, readonly) and is given a pointer to a local copy in return. Cid's global
objects use implicit locking and the runtime system maintains consistency.

6.2 Cache coherence

Early multiprocessors tended to have caches separated from a set of memories by a bus. An in-
validation protocol is a common way to maintain coherence. A write to a shared line causes an

10

www.manaraa.com

invalidation signal to be sent on the bus. The processors snoop the bus looking for such transactions
and invalidate lines in their local caches as necessary. More recently proposed multiprocessors are
built from processor-memory pairs interconnected through a network and use directories instead of
snooping [3].

Li and Hudak [28] implemented shared virtual memory, a system that supports sequentially
consistent transparent shared memory with locks in software. Their system, Ivy, uses a directory
based scheme to manage coherence on the page level. Later systems, such as Munin [10], seek
to reduce communication by using relaxed consistency models, such as release consistency [18].
Petersen and Li [33] and Konthothanassis and Scott [25] implement release consistency using the
operating system's virtual memory mechanisms.

Most papers that use the term \software coherence" have referred to the insertion of invalidation
instructions by a compiler. Darnell and Kennedy [15], Cheong and Veidenbaum [12] and Min and
Baer [31] propose a variety of local coherence mechanisms for FORTRAN. A comparison of software
and hardware schemes was done by Adve et al. [1].

Olden's coherence scheme is an adaptation of these ideas to our programming model. We ob-
tain relaxed consistency by performing coherence events only at migrations, and as in Blizzard [37],
provide coherence at the cache-line level. The local knowledge scheme is related to compiler invali-
dation.

7 Conclusions

We have presented a new mechanism for automatically selecting between computation migration
and caching for explicitly parallel programs that use recursive dynamic data structures on message-
passing machines. We performed experiments on ten benchmarks using our prototype implemen-
tation on the CM-5. Our results indicate that the heuristic makes good selections with minimal
programmer input, and that by combining computation migration with software caching, we can
obtain signi�cant improvements in performance.

The performance improvements gained by combining computationmigration and software caching
are not limited to distributed memory machines. Programs run on both networks of workstations and
recently proposed hybrid shared-memory/message-passing machines, such as Alewife[2], FLASH[26],
and Typhoon/Tempest[34], could bene�t from the combination. Implementations of Olden for such
machines would use di�erent thresholds for choosing between computation migration and caching.
The threshold for a network of workstations would favor computation migration, because of its high
communication latency, whereas the threshold for machines with extensive hardware support would
favor caching.

We are in the process of porting Olden to the Tempest interface. Our �rst Tempest implemen-
tation will run on top of Blizzard on the CM-5. This will allow us to take advantage of �ne-grain
access control to make pointer tests cheaper and examine the tradeo� of this overhead against the
cost of processing interrupts on misses.

References
[1] S. Adve, V. Adve, M. Hill, and M. Vernon. Comparison of hardware and software cache coherence schemes. In

ISCA, pages 298{308, 1991.

[2] A. Agarwal et al. The MIT Alewife machine: A large scale distributed-memory multiprocessor. Technical Report
MIT/LCS TM-454, MIT, 1991.

[3] A. Agarwal, R. Simoni, M. Horowitz, and J. Hennessy. An evaluation of directory schemes for cache coherence.
In ISCA, pages 280{289, 1988.

[4] H. Bal, M. F. Kaashoek, and A. Tanenbaum. Orca: A language for parallel programming of distributed systems.
IEEE Trans. on Software Engineering, 18(3):190{205, March 1992.

[5] J. Barnes and P. Hut. A hierarchical (o)(N logN) force-calculation algorithm. Nature, 324:446{449, December
1986.

[6] J. Bentley. A parallel algorithm for constructing minimum spanning trees. J. of Algorithms, 1:51{59, 1980.

11

www.manaraa.com

[7] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway distributed shared memory system. In IEEE Computer
Society Intl. Conference, pages 524{533, February 1993.

[8] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algorithm for shared-memory machines.
SIAM J. Comput., 18(2):216{228, 1989.

[9] N. Carriero, D. Gelernter, and J. Leichter. Distributed data structures in Linda. In PoPL, pages 236{242,
January 1986.

[10] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation and performance of Munin. In SOSP, pages 152{164,
1991.

[11] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Little�eld. The Amber system: Parallel programming on a
network of multiprocessors. In SOSP, pages 147{158, December 1989.

[12] H. Cheong and A. Veidenbaum. A cache coherence scheme with fast selective invalidation. In ISCA, pages
299{307, 1988.

[13] A. Chien, V. Karamcheti, and J. Plevyak. The Concert system{ compiler and runtime support for e�cient,
�ne-grained concurrent object-oriented programs. Technical Report UIUCDCS-R-93-1815, Dept. of Comp. Sci.,
Univ. of Illinois at Urbana-Champaign, June 1993.

[14] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick. Parallel
programming in Split-C. In Supercomputing, pages 262{273, 1993.

[15] E. Darnell and K. Kennedy. Cache coherence using local knowledge. In Supercomputing, pages 720{729, 1993.

[16] B. Falsa�, A. Lebeck, S. Reinhardt, I. Schoinas, M. Hill, J. Larus, A. Rogers, and D. Wood. Application-speci�c
protocols for user-level shared memory. In Supercomputing, 1994.

[17] C. Fraser and D. Hanson. A Retargetable C Compiler: Design and Implementation. Benjamin/Cummings,
Redwood City, CA, 1995. ISBN 0-8053-1670-1.

[18] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In ISCA, pages 15{26, May 1990.

[19] L. Guibas and J. Stol�. General subdivisions and voronoi diagrams. ACM Trans. on Graphics, 4(2):74{123,
1985.

[20] R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation. ACM Trans. on Programming
Languages and Systems, 7(4):501{538, October 1985.

[21] W. Hsieh, P. Wang, and W. Weihl. Computation migration: Enhancing locality for distributed-memory parallel
systems. In PPoPP, pages 239{248, 1993.

[22] J. Hummel, L. Hendren, and A. Nicolau. A general data dependence test for dynamic, pointer-based data
structures. In PLDI, pages 218{229, June 1994.

[23] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald system. ACM Trans. on
Computer Systems, 6(1):109{133, 1988.

[24] R. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane.
Mathematics of Operations Research, 2(3):209{224, August 1977.

[25] L. Kontothanassis and M. Scott. High performance software coherence for current and future architectures.
Technical report, Dept. of Comp. Sci., Univ. of Rochester, September 1994.

[26] J. Kuskin et al. The stanford FLASH multiprocessor. In ISCA, pages 302{313, April 1994.

[27] L. Lamport. How to make a multiprocessor that correctly executes multiprocess programs. IEEE Trans. on
Computers, C-28(9), September 1979.

[28] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Trans. on Computer Systems,
7(4):321{359, November 1989.

[29] G. Lomow, J. Cleary, B. Unger, and D. West. A performance study of Time Warp. In SCS Multiconference on
Distributed Simulation, pages 50{55, February 1988.

[30] S. Lumetta, L. Murphy, X. Li, D. Culler, and I. Khalil. Decentralized optimal power pricing: The development
of a parallel program. In Supercomputing, pages 243{249, 1993.

[31] S. Min and J. Baer. Design and analysis of a scalable cache coherence scheme based on clocks and timestamps.
IEEE Trans. on Parallel and Distributed Systems, 3(1):25{44, January 1992.

[32] Rishiyur Nikhil. Cid: A parallel, \shared-memory" C for distributed-memory machines. In Workshop on Lan-
guages and Compilers for Parallel Computing, 1994.

[33] K. Petersen and K. Li. Cache coherence for shared memory multiprocessors based on virtual memory support.
In Intl. Parallel Processing Symp., April 1993.

[34] S. Reinhardt, J. Larus, and D. Wood. Tempest and typhoon: User-level shared memory. In ISCA, 1994.

[35] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data structures on distributed memory
machines. ACM Trans. on Programming Languages and Systems, 1995. Also available as Princeton CS-TR-447-
94 via anonymous ftp.

12

www.manaraa.com

[36] H. Samet. Computing perimeters of regions in images represented by quadtrees. IEEE Trans. on Pattern Analysis
and Machine Intelligence, PAMI-3(6), November 1981.

[37] I. Schoinas, B. Falsa�, A. Lebeck, S. Reinhardt, J. Larus, and D. Wood. Fine-grain access control for distributed
shared memory. In ASPLOS, October 1994.

[38] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism for integrated commu-
nication and computation. In ISCA, May 1992.

[39] M. Zekauskas, W. Sawdon, and B. Bershad. Software write detection for a distributed shared memory. In
USENIX Symp. on Operating Systems Design and Implementation, pages 87{100, 1994.

A Maintaining Cache Coherence

Due to space constraints, we described only one cache coherence scheme in the main text of the
paper. This appendix discusses the issue of coherence in more detail, presenting two alternative
coherence mechanisms and a quantitative analysis of their relative performance.

Because it is quite expensive to implement sequential consistency, many relaxed models have
been proposed [7, 10, 18]. These models rely on having su�cient synchronization in the program
to provide the illusion of sequential consistency. In Olden, we have implemented two other relaxed
coherence models in addition to the local knowledge scheme discussed earlier. We demonstrate the
correctness of each of these by relating them to a common relaxed model, release consistency [18].

In a release-consistent program, the programmer inserts acquires and releases for di�erent locks.
The system guarantees that after a lock is acquired, the processor performing the acquire sees all of
the writes that occurred before the previous release of that lock. Release consistency maps nicely
onto Olden, as each migration sent may be viewed as releasing a lock, and each migration received
as acquiring one. Since the semantics of Olden's futures requires that no thread can read a data
item while another thread is writing it, the \virtual locks" may be perceived as locking all of the
data that is written by the thread. An Olden program running with any coherence protocol that
provides release consistency with respect to these virtual locks will have the same semantics as the
same program running on a sequentially consistent system.

Olden's local knowledge scheme invalidates its entire cache on receiving a migration (i.e., on each
acquire). Consequently, the processor performing the acquire will see all of the writes that occurred
before the previous release, and thus have the same semantics as on a sequentially consistent system.

Our second coherence protocol is an adaptation of eager release consistency [10]. In an eager
release-consistent program, at each release all of the information regarding updates is forwarded
immediately to other processors, and acknowledgements are collected before the release is allowed
to complete. We have implemented eager release consistency in Olden by having the compiler insert
code to track each write into the heap. These writes are tracked at the line level, by keeping a
vector of dirty bits for each shared page. Additionally, the runtime system tracks sharers when it
receives cache requests. Just as we performed allocations at the page level, we also track sharers at
the page level, to reduce the amount of state information. At each migration, the runtime system
sends invalidations to each sharer of a page, indicating which lines have been written on that page.
This does not introduce false sharing, since writes are tracked at the line level, but could cause some
spurious invalidation messages to be sent (i.e., an invalidation of a line might be sent to a processor
that does not share that line). This scheme may be referred to as a global knowledge scheme, as
invalidations are performed on the basis of knowledge obtained from other processors.

Finally, we implemented a bilateral scheme, that combines both local and global knowledge.
Again, the compiler inserts code to track writes; however, sharers are not tracked. Instead, a
timestamp is kept for each page. This timestamp is incremented when a migration leaves a processor,
if the page has been written. On receiving a migration, a processor marks all of its pages, so that
they miss on the �rst access. (This is similar to the use of epoch bits, as proposed by Darnell
et al. [15].) On this miss, the handler sends the page's timestamp to its home, and is informed
which lines need to be invalidated. The bilateral scheme greatly reduces the amount of invalidation
tra�c; however, it still must pay the cost of tracking writes. Consequently, the bilateral scheme
should perform best on codes where there is a large amount of data that is read-only across several
migrations, so that the savings in misses will outweigh the extra cost of tracking writes.

13

www.manaraa.com

Table 3: Caching Statistics on 32 processors

Cachable Writes Cacheable Reads % of Remote references Total
% # % that miss Pages

Benchmarks (1000s) Remote (1000s) Remote local global bilateral Cached
Bitonic Sort 8,208 0.045 32,617 0.054 28.6 24.9 29.2 1604
Voronoi 9,825 1.57 42,359 1.26 5.89 5.89 5.89 2982
EM3D 0 0 839 19.4 6.18 6.18 6.18 1995
Barnes-Hut 2,707 18.3 73,601 55.6 0.815 0.563 0.792 21749
Perimeter 0 0 1,018 2.02 8.80 8.63 8.80 502
Health 8,861 0.063 33,405 0.019 87.0 10.3 87.0 163

Table 3 gives statistics on the behavior of the three coherence schemes. For most of our bench-
marks, the three schemes behave basically identically, as almost all shared data is written between
migrations. Barnes-Hut has a slightly smaller number of misses for the global and bilateral schemes.
Bitonic Sort and Perimeter both have a slightly smaller number of misses only for the global scheme.
The percentage of misses in Health decreases dramatically by adding global knowledge, but since
the total number of misses is small the local knowledge scheme has the lowest running time. Over-
all, since the number of unnecessary misses generated by the overzealous invalidation of the local
scheme is quite small (i.e., less than two percent of the total number of cacheable references), and
the overhead of tracking writes is substantial (seven instructions for non-shared pages, and twenty-
three instructions for shared pages)6 the local knowledge scheme has the best running times for our
benchmark suite.

Although it may seem surprising that Olden programs run faster with such a coarse coherence
scheme, it follows logically from the way Olden uses data. To get good performance, the programmer
must lay out the data so that related data is stored on the same processor. Also, since threads are
guaranteed not to interfere, we are able to postpone the invalidations signi�cantly. Given these
considerations, and the fact that the benchmarks do not have much long-term read-only data, it is
not surprising that the local knowledge scheme outperfoms the others.

6This could possibly be reduced using techniques similar to those by Zekauskas et al. [39]; however, the extra
overhead would still exceed the caching performance gain for our benchmarks.

14

